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Introduction

Human-subjects research often involves noisy measures 
and limited sample sizes. Accordingly, small effects and 
low statistical power are typical in many areas of behav-
ioral and medical science (Marek et al., 2022; Szucs & 
Ioannidis, 2017). Some argue that this situation is ten-
able because the ongoing identification of small effects 
amounts to a steady accumulation of knowledge (Götz 
et al., 2022). We argue to the contrary. Specifically, we 
show that the study of small effects frequently produces 
results that are indistinguishable from flipping a coin 
to determine the direction of an experimental treat-
ment’s effect. We use this idea to develop a benchmark 
based on minimum acceptable estimation accuracy. 
This benchmark yields an intuitive interpretation of 
effect-size estimates—one based in accurate estimation. 
We show that calibrating existing tests to our bench-
mark yields far stricter thresholds for hypothesis testing 
and for statistical-power calculations. Our work is 
intended to spark a larger discussion within the scien-
tific community on acceptable estimation accuracy, the 
interpretation of effects, and statistical standards.

Although there are many exceptions, behavioral sci-
entists almost universally test null hypotheses, which 
are often formulated as two or more means being 
exactly equal to one another. Much ink has been spilled 
noting the shortcomings of this approach (e.g., Krantz, 
1999; Nickerson, 2000; van de Schoot et  al., 2011). 
Cohen (1994) famously criticized the null hypothesis 
through his “nil” hypothesis critique, describing it as a 
conceptual tool that is ill-suited for answering substan-
tive research questions. He noted that for continuous 
dependent variables, it is simply impossible for two 
population means to be truly equal to one another. This 
means that the null hypothesis acts as a straw man  
to be knocked down at a given sample size. By his 
critique, all effects exist in a trivial sense; it just may 
be that some are so small that they do not warrant 
attention. A more meaningful line of investigation is 
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determining whether effects are accurately estimated 
and characterized.

What constitutes acceptable estimation accuracy? 
This question is challenging to answer and fraught with 
subjectivity. A confidence interval (CI) deemed accept-
ably narrow by one scientist may be unacceptably wide 
to another. We seek to answer this question by the use 
of a reference—a foil—with undeniable negative quali-
ties. To better understand the accuracy of standard 
methods, we will compare them against a foil estima-
tion process that is, by construction, incapable of accu-
rately estimating effects. Such a foil is useful for 
handling questions of subjectivity. If a community of 
scientists agree that this foil is unacceptably inaccurate, 
then any estimation process that cannot be distin-
guished from it is also unacceptably inaccurate.

Our foil must be tailored to the types of questions 
that behavioral scientists ask and to how they make 
decisions about data. Behavioral scientists often formu-
late directional hypotheses about treatment effects. Is 
the population mean of Group A larger than that of 
Group B? A strong foil would offer zero information 
about the correct direction of effects. A foil could ran-
domize the direction of any observed effect; for exam-
ple, which group mean is larger than another would be 
decided via a coin flip. Such a foil creates a worst-case 
scenario for evaluating any directional hypothesis. In 
addition, behavioral scientists typically use the outcome 
of a statistical test to conclude whether a treatment 
effect is detected. In keeping with our estimation focus, 
an ideal foil would remove effect detection from the 
comparison. One way to handle this is for the foil to 
correctly detect whether an effect exists at similar, or 
identical, rates as standard methods. A scientist using 
this foil would correctly reject a relevant null hypothesis 
just as often as someone using standard estimation 
methods. This would make the foil especially useful for 
evaluating published findings in the literature.

Scientists using such a foil would arrive at random 
conclusions regarding their data. All else being equal, 
they would detect effects as often as scientists using 
standard methods, but would be incapable of accurately 
estimating and characterizing them. The logic is straight-
forward: If one accepts that arriving at random conclu-
sions is unscientific and inaccurate, then it becomes 
incumbent on the scientific community to use statistical 
procedures that would be distinguishable from such a 
foil.1 In the present work, we focus on the canonical 
case of using sample means to estimate population 
means for two independent groups. Our proposed foil 
consists of an estimation process that randomizes the 
direction of treatment effects while still correctly reject-
ing a null hypothesis as often as standard methods.

Our analyses reveal that distinguishing sample means 
from such a foil requires far larger sample sizes than 
typically employed in the behavioral sciences, espe-
cially when studying the kinds of small effects that are 
commonplace in the psychological literature. We also 
show that our foil comparison naturally relates to many 
existing tests and methods, including those based on 
traditional null hypotheses. We leverage these connec-
tions to provide new calibrations for existing tech-
niques. For power analyses, we show that typical power 
thresholds of .80 are not sufficient to rule out unac-
ceptable estimation accuracy. Linking our argument to 
hypothesis testing, we show that far stricter thresholds 
( . )α = 0005  are required if sufficient estimation accuracy 
is to be ensured. We also provide a simple methodology 
that allows researchers to convert a common measure 
of effect size, Cohen’s d , into an easily understood 
measure of estimation accuracy on the basis of our foil. 
This methodology can be applied to CIs over Cohen’s 
d , allowing researchers to determine whether their esti-
mates are acceptably accurate. Finally, we examine a 
collection of meta-analyses from the behavioral sci-
ences, finding that typical estimates in many fields of 
study are indistinguishable from our random conclu-
sions foil.

Ultimately, all scientific decisions regarding data are 
made by human beings. A key aim of any statistical 
methodology is to provide characterizations of data that 
researchers can understand. What we provide in the 
current work is simply a perspective, one grounded in 
a common experimental design with linkages to many 
other familiar statistical quantities and methods. It is 
through this framing that we aim to push forward the 
conversation on estimation accuracy and replication 
efforts. To further understand our approach and provide 
precise definitions, consider the following scenario.

A Tale of Two Labs

Consider two hypothetical laboratories, Lab 1 and Lab 
2, studying an effect—for instance, the efficacy of a 
drug. Both labs use a treatment condition (Group A) 
and a control condition (Group B) and compare the 
sample means from each group, x A  and xB, on some 
outcome measure. These sample means underpin the 
statistical tests conducted by both labs and provide 
point estimates for the population means, mA and mB, 
that instantiate their scientific hypotheses regarding the 
drug’s effect. Assume that the drug has a true effect 

δ > 0, where δ
µ µ

σ=
−A B , with σ being the standard 

deviation of responses from the populations.2

Unfortunately, Lab 2 has a glitch in their data-analysis 
software—it randomly assigns, with equal likelihood, 
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the labels of “treatment” and “control” to those means. 
That is, if Lab 2 conducted a study for which the actual 
sample means for the two conditions were x A = 7  and 
xB = 3 , the software would instead report x A = 3  and 
xB = 7 with probability equal to .5, and the truth cannot 
be recovered. We refer to this procedure as a random-
conclusions estimator (RCE) because the direction of 
the effect—whether the drug helps or harms—is deter-
mined at random. Although mathematically related, the 
RCE is distinct from a classic Fisher randomization test 
in which labels are randomized at the individual 
response level to generate a null, no-effect reference 
distribution.

If Lab 2’s error came to light, retraction of any study 
that relied on this software would be demanded, and a 
drug approved on the basis of such results would (right-
fully) be recalled. But Lab 2 provides an interesting 
comparison with Lab 1, especially when considering 
issues of replication and reliability. Lab 2 will correctly 
reject the null hypothesis, H0 : µ µA B= , exactly as often 
as Lab 1 using a two-tailed t test. Barring preregistration 
restrictions, both labs will publish results at similar rates. 
In this way, Lab 2 will pollute the scientific literature 
with random conclusions and, in the case of drug trials, 
potentially claim evidence for dangerous treatments.

Lab 1 and Lab 2 are identical with the exception that 
Lab 2 is using an RCE, which, by any measure, is not 
science because the direction of effects (including pub-
lished effects) is determined via a coin flip. Intuitively, 
we would like to believe that results from the two labs 
would be readily distinguishable. Unfortunately, in many 
areas of behavioral science, even if all effects exist, Lab 
2’s results will often be strikingly similar to Lab 1’s, and 
the gain from removing their results from the literature 
may be marginal at best. This situation is illustrated in 
Figure 1, which presents scenarios for effect sizes that 
are conventionally considered large, medium, and small 
(yet interpretable; Cohen, 1988; Sawilowsky, 2009). For 
simplicity, these scenarios assume that outcomes in both 
conditions are normally distributed with unit variance. 
The left and right columns of Figure 1 illustrate the 
sampling distributions of mean estimates in each of the 
labs. Each dot represents a pair of means from a single 
study. How well these means estimate the population 
means mA and mB is quantified in terms of a common 
metric for assessing estimation accuracy: mean-squared 
error (MSE; see the Appendix).

In the top row of Figure 1, the effect size is large. 
Lab 2’s bimodal distribution of estimates clearly evi-
dences the software error, and the resulting MSE is 19 
times larger than Lab 1’s. We use ψ to denote the ratio 
MSE

MSE
Lab

Lab

2

1

; ψ has a lower bound of 1, given that there is 

no scenario in which Lab 2’s estimates will be, on average, 

more accurate than Lab 1’s. The middle and bottom 
rows of Figure 1 illustrate how the estimates from the 
two labs converge as effect size becomes smaller, with 
Lab 2’s distribution of estimates eventually becoming 
unimodal. These changes are indexed by ψ: In the bot-
tom row, ψ = 1 5. , and estimates from the two labs are 
visually nearly indistinguishable, an impression con-
firmed by a small Wasserstein metric (Rubner et  al., 
2000) and the large number of replicates needed (at 
least 54 per lab) to reliably distinguish the distributions 
of results from the two labs via a Kolmogorov-Smirnov 
test (see the Appendix).

Effect size and sample size combinations like those 
in the bottom row of Figure 1 raise an important ques-
tion: If Lab 2’s results are subject to retraction, how 
should we interpret Lab 1’s results? Put differently, if 
one’s results look unscientific, perhaps they are unsci-
entific. A computer glitch on the scale of Lab 2’s results 
is, one hopes, an unlikely occurrence, but the compari-
son is useful in illustrating what a worst-case estimator 
could look like and why it would be problematic if it 
were indistinguishable from current practice. Within 
the behavioral sciences, many of the hypotheses being 
tested, if not the vast majority, are directional in nature. 
The RCE completely randomizes the direction of effects, 
removing any information about direction from the 
data. Yet the RCE is special in that it still detects effects 
at the same rate as sample means via a nondirectional 
t test, which is, once again, ubiquitous practice in the 
behavioral sciences. In this way, our RCE comparison 
provides an interesting new perspective on published 
literature in the field, which often hinges upon the suc-
cessful reporting of a significant test. We are not seri-
ously suggesting that such a computer glitch exists, but 
we do think it highly problematic if a large corpus of 
work within the behavioral sciences is indistinguishable 
from such an error.3

General Formulation

If the goal is to be distinguishable from a veritable Lab 2, 
as instantiated by the RCE, we can use ψ as an index 
to set standards for hypothesis testing and sample-size 
planning. As shown in the Appendix, ψ simplifies to

	         ψ δ
δ

( , ) ,n
n

=
+2 2

2
	 (1)

where n  is the sample size per group. Equation 1 is 
straightforward to interpret: For given values of δ and 
n, sample means are ψ times as accurate (in terms of 
MSE) as the RCE. Although ψ is distribution-free and 
interpretable outside of any testing framework, it func-
tionally relates to a two-sample t test and the resulting 
p values. See the Appendix for connections between ψ 
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Fig. 1.  Distribution of sample mean estimates xA and xB for Lab 1 and Lab 2. Each row corresponds 
to a different combination of effect size d  and sample size per group n. The ratio of mean-squared 
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, is represented by ψ. To facilitate visualization, we report 

all relevant values for each comparison from both Lab 1 and Lab 2 (δ, n , MSE) in the Lab 1 panel.
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and other metrics, including out-of-sample R2. This 
relationship allows us to reexamine hypothesis-testing 
and statistical-power standards by calibrating to mini-
mally acceptable estimation, as opposed to detection 
error rates against a null hypothesis. The mathematics 
are familiar, but the RCE comparison offers new inter-
pretation to these techniques.

Determining a minimum acceptable ψ for a given 
scientific discipline is perhaps best decided on a case-
by-case basis, taking into consideration specific research 
goals (S. F. Anderson & Maxwell, 2016; Navarro, 2019). 
Here, we demonstrate the consequences of a threshold 
of 3 for the interpretation of results and sample-size 
planning. Although somewhat arbitrary and perhaps 
modest, this threshold is motivated by the logic illus-
trated in Figure 1. When ψ < 3 , the sampling distribu-
tion of the RCE becomes unimodal for normal random 
variables (Figs. A3–A7, Appendix), and the number of 
study replicates required to reliably distinguish it from 
sample means becomes impractical (Table A1). If we 
take our illustration with the two labs seriously, poor ψ 
values imply that members of Lab 1 and Lab 2 could 
spend their entire careers replicating scores of studies 
and be unable to reject the null hypothesis that they are 
using the same estimator (see the Appendix).

Table A1 in the Appendix characterizes ψ in terms 
of the information about the direction of effect that is 
gained by using sample means versus the RCE. For 
example, for ψ = 1 5. , the usage of sample means 
reduces the uncertainty about the correct direction of 
effects by only 29% compared with the total uncertainty 
given by the RCE (see also Fig. A1, Appendix). In this 
way, our RCE comparison links directly to the concept 
of Type S errors regarding the sign of the effect (Gelman 
& Carlin, 2014; Gelman & Tuerlinckx, 2000). See also 
recent work by Domingue et al. (2021), who applied 
the concept of weighted coins to develop a measure of 
predictive accuracy for binary outcomes.

Applications to CIs and Hypothesis 
Testing

Applying Equation 1 to the bounds of a 95% CI over δ 
provides researchers a simple, transparent method to 
gauge how accurately a range of plausible effects is 
being estimated. For example, consider a study with a 
sample size of 50 that yields an effect size point esti-
mate d of 0.5 and a 95% CI equal to [ . , . ]0 10 0 89  (see, 
e.g., Cumming & Finch, 2001). This interval does not 
include 0, corresponds to a p value of .014, and by 
current standards would provide researchers assurance 
that an effect has been detected. But even if this interval 
contains the population value δ, researchers cannot be 

confident that their estimation is better than the bottom 
row of Figure 1. Applying Equation 1 to this CI yields 
a ψ interval of [ . , . ]1 25 20 80 , which includes conditions 
in which sample mean estimates are practically indis-
tinguishable from random conclusions. Put another 
way, these researchers may claim that the population 
means are not equal, but, upon examining the bounds 
on ψ, may also conclude that there remains tremendous 
uncertainty regarding the size and direction of the 
effect. Indeed, sample means estimation yields a 
16.075% reduction in uncertainty (relative to the RCE) 
at the lower bound (ψ = 1 25. ) and a 99.998% reduction 
in uncertainty at the upper bound (ψ = 20 80. ; Fig. A1). 
Although the effect-size estimate implies a difference 
between groups, the accuracy of this estimate could be 
anything from a blind guess to a statement of fact.

Figure 2 contextualizes ψ within familiar statistical 
quantities:

•• Panel (a) - ensuring that ψ is greater than 3 often 
requires a large n, especially when dealing with 
smaller effect sizes (e.g., δ = 0 10. ). Sample size 
requirements are more stringent if one also wants 
to achieve 95% confidence that the true ψ  is 
larger than 3. For example, the estimation accu-
racy of a small effect (with δ = 0 3. )  requires a 
sample of 2 255 510× =  to be confidently accept-
able. See the Appendix for a discussion on how 
effect-size priors can be used to determine n .

•• Panel (b) - the requirements for acceptability can 
also be framed in terms of statistical power. 
Regardless of δ , under the standard alpha 
(α = . )05 , statistical power needs to be above .92 
for CIs over δ  to exclude ψ values less than 3. 
Minimally acceptable estimation of an effect 
requires its detection to be near certain: Common 
but arbitrary power standards, such as .80, do not 
yield estimates that rule out unacceptable estima-
tion accuracy.

•• Panel (c) - it is well known that a larger n  results 
in smaller observed effects becoming statistically 
significant. However, the ψ associated with said 
effects can still be unacceptable. For example, 
critical effects with a of p .05  yield a ψ of approxi-
mately 5, with CIs that include values very close 
to 1. In comparison, critical effects with a of p . ,0005   
which are approximately 78% larger than their  
.05 counterparts, yield confidently acceptable ψ 
values. We note that using an α of .0005  as a 
threshold for null hypothesis testing is a stricter 
standard than other recent proposals that focus on 
the detection of effects (Benjamin et al., 2018). 
Such a stringent criterion makes it more difficult 
for questionable researcher practices, such as 
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Fig. 2.  Relationship between ψ  and different relevant quantities. The bands correspond to the 95% confidence intervals (CIs) of ψ. The 
power values reported in (b) are also reported in Table 1. For further details, see the main text and the Appendix.

p-hacking (Simmons et  al., 2011), to affect the 
outcome. Finally, these results may also serve to 
dampen researcher urges to characterize nonsig-
nificant effects (p > .05 ) as if they are acceptably 
accurate.

•• Panel (d) - some researchers consider an effect to 
be robust or reliable when the 95% CI of δ does 
not cross zero (Cumming, 2013). But when we 
transform a strictly positive or negative interval 
onto a range of plausible ψ values, we see that 
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they will include unacceptable values (for a thresh-
old of 3) unless the width is less than 1 16. δ (i.e., 
58% of its maximum width of 2δ). In short, estima-
tion accuracy can be unacceptable even for robust 
or reliable effects.

Examining Prior Meta-Analyses

We examined several recent meta-analyses to get a 
snapshot of how common poor ψ values are in various 
subfields (Gaeta & Brydges, 2020; Nuijten et al., 2020; 
Siegel et al., 2021; Szucs & Ioannidis, 2017). Table 1 
shows a remarkable consistency across subfields, with 
the estimated median power to detect a small effect 
(δ = 0 20. ) ranging between 0.11 and 0.16. These power 
estimates translate to ψ values ranging from 1.54 to 
1.94, which strongly resemble the unacceptable sce-
nario illustrated in the bottom row of Figure 1. Said 
simply, the majority of studies examining small effects 
in these fields may be producing results that are virtu-
ally indistinguishable from random conclusions. These 
meta-analytic values are also plotted in Figure 2 (b), 
where we show that even representative studies exam-
ining medium and large effects are not sufficiently pow-
ered to rule out unacceptable estimation accuracy.

Extensions

Our Lab 1 and Lab 2 framing provides a concrete way 
for scientists to grapple with inherently difficult ques-
tions about acceptable estimation accuracy and replica-
tion within the behavioral sciences. This framing could 
be extended to other estimators, testing frameworks, 

and experimental designs. In the current application, 
we focused on sample means and the usage of the 
independent two-sample t test. We did so because of 
the ubiquity of this experimental design and testing 
framework within the behavioral sciences. Our RCE 
formulation could be used to calibrate power and 
hypothesis-testing thresholds for statistical tests other 
than the standard t test, such as Welch’s test, which 
allows for differences in group variance (Welch, 1947). 
Future work could explore how different configurations 
of group variances impact the RCE sample-mean com-
parison and what testing and power thresholds provide 
acceptable estimation accuracy.

The RCE is defined by the randomization of group 
labels on the estimates of interest, but these are not 
required to be population means. In keeping with our 
two-group design, an RCE could be defined as the 
randomization of group labels to estimates of popula-
tion medians, which may be an interesting application 
for heavily skewed distributions. One could then exam-
ine alternative power and hypothesis-testing calibra-
tions for tests such as the Wilcoxon-Mann-Whitney U 
test. It should be noted, however, that the Wilcoxon-
Mann-Whitney U test is appropriate only for evaluating 
whether two population medians are different under 
relatively strict assumptions—that is, that both popula-
tions are identically distributed and differ only by a 
shift in location (Divine et al., 2018).

The RCE and two-labs perspective could be extended 
to other experimental designs. In defining a general 
RCE comparison, we want to preserve two distinct fea-
tures of our current formulation. First, a generalized 
RCE should randomize the conclusions of scientific 

Table 1.  Median Power to Detect Small (δ = .2), Medium (δ = .5), and Large (δ = .8) Effects as Reported 
in Meta-Analyses and Their Corresponding ψ  Values (in Brackets).

Small effect Medium effect Large effect

Meta-analyses Median power [ψ ] Median power [ψ ] Median power [ψ ]

Szucs & Ioannidis (2017)  
Cognitive neuroscience 0.11 [1.54] 0.40 [4.06] 0.70 [7.56]
Psychology 0.16 [1.94] 0.60 [6.13] 0.81 [9.48]
Medicine 0.15 [1.86] 0.59 [6.00] 0.80 [9.32]
Nuijten et al. (2020)  
Intelligence 0.11 [1.54] 0.47 [4.75] 0.99 [19.88]
Gaeta & Brydges (2020)  
Speech and language 0.13 [1.70] 0.49 [4.86] 0.91 [12.52]
Siegel et al. (2021)  
Industrial and organizational  
  psychology

0.47 [4.58] 0.79 [8.86] 0.99 [19.88]

Note: The ψ values are also illustrated in Figure 2b. We calculated power for Gaeta & Brydges (2020) and Siegel et al. 
(2021) on the basis of median sample sizes.
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interest. Applications could include a one-way analysis 
of variance, in which group mean labels are random-
ized, thus randomizing which means are larger than 
others while preserving Type I and Type II error rates 
for the omnibus F test. Generalizations could also 
include multiple regression: Certain aspects of the esti-
mation process could be randomized, such as whether 
one standardized regression coefficient is larger than, 
or has the same sign, as another.4 Second, a generalized 
RCE should also yield statistically significant results at 
rates similar to the standard estimation method being 
evaluated. This gives a generalized Lab 2 comparison 
additional bite, because the generalized RCE is not just 
randomizing the direction of results; it is also leading 
to random decisions regarding data. This second point 
is not intended to avoid important questions relating 
to preregistration practices (Nosek et al., 2019; Szollosi 
et al., 2020) but rather to place a finer point on an RCE 
comparison.

Given a suitable RCE and a standard method of  
estimation (e.g., ordinary least squares), we define a 
generalized ψ as the ratio of the respective mean-squared- 
error values. Although MSE has several nice properties, 
other accuracy metrics could also be substituted. Under 
this definition, ψ retains its simple interpretation: An 
estimator is ψ times as accurate as a generalized RCE. 
Future work could develop these comparisons and 
relate them to existing techniques, such as CIs, statisti-
cal power, and hypothesis testing.

Recommendations

Report ψψ  intervals

When reporting CIs over Cohen’s d values, we recom-
mend also reporting the requisite ψ interval using that 
study’s sample size. A CI communicates a range of 
plausible effect sizes, whereas the CI over ψ commu-
nicates how well the effect is being estimated relative 
to an easily understood benchmark. If the ψ CI includes 
values less than 3, it is worth reporting that the data do 
not rule out unacceptable levels of estimation accuracy. 
Although we have illustrated some consequences of 
using 3 as a threshold for ψ , other values could be used 
depending upon the context.5 The key takeaway is that 
ψ intervals translate effect-size estimates into a com-
prehensible measure of estimation accuracy. Reporting 
ψ  intervals also provides researchers a degree of 
nuance when reporting results, allowing them to claim 
(or not) the detection of an effect, up to the usual Type 
I error rate under a specified a level, while also being 
transparent about estimation accuracy. To be clear, no 
additional inference is taking place: Transforming a CI 
over δ  values into one over ψ values is expressing the 

same information again from an estimation perspective. 
Making use of such a perspective can be done regard-
less of one’s statistical-inferential inclinations (e.g., 
Bayesian vs. frequentist). It is worth noting once again 
that ψ is distribution-free, in that its interpretation as 
the ratio of MSE values between sample means and the 
RCE does not depend upon any particular distributional 
form (see the Appendix for details).

Power statistical tests for estimation

When conducting a priori power analyses, we recom-
mend that the sample size be selected according to 
effective estimation of the effect, rather than simple 
detection. We demonstrated that power of .92, when 
using an a of .05, results in CIs over δ  that exclude ψ 
values less than 3. This perspective offers a grounded 
rationale for power values, rather than the highly arbi-
trary, but quite common, value of .80. Selecting sample 
sizes in this way is similar in spirit to the work of  
Gelman and Carlin (2014) and connects to the work of 
Kelley and Maxwell (2003) and Kelley and Lai (2011), 
who argue for determining sample size on the basis of 
CI width. See also the work of S. F. Anderson et  al. 
(2017), who present a power-analysis framework that 
incorporates publication bias.

Bayesian estimation

One takeaway from our arguments is that there simply 
is not much information contained in small samples 
and small effects. Bringing more information to the 
analysis can take many forms, with Bayesian methodol-
ogy being an obvious approach. Informative priors can 
be used to improve estimation accuracy of mean esti-
mates (Gelman et  al., 1995), and such priors can be 
incorporated into the t test itself (see, notably, Rouder 
et al., 2009; Gronau et al., 2019; and Ly & Wagenmakers, 
2021). Bayesian formulations are well suited for inte-
grating informative hypotheses with cognitive models 
(Lee & Vanpaemel, 2018; Vanpaemel & Lee, 2012), 
which can help avoid some of the estimation issues we 
raise here. This approach is especially important for 
researchers who face limited sample sizes by the very 
nature of their investigations. Of course, the accuracy 
of Bayesian approaches under limited sample sizes will 
be prior dependent (e.g., McNeish, 2016). The Appen-
dix also provides two examples of how prior beliefs 
can be incorporated into the computation of ψ .

Computational modeling and formal 
theory

Throughout, we have treated the accurate estimation of 
an effect as a primary goal. There is much to say about 
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whether conceptualizing and testing theories in this way 
is optimal from a meta-science perspective. Indeed, 
Scheel (2022) argued that many psychological hypoth-
eses are imprecisely specified, leading to questionable 
attempts at replication and measurement. Improved 
theory and quantitative modeling can lead to more com-
pelling tests (e.g., model selection; for a recent review, 
see Myung & Pitt, 2018), avoiding simple effect-based 
characterizations (van Rooij & Baggio, 2021); see also 
Guest and Martin (2021) and Proulx and Morey (2021). 
Lee et  al. (2019) and Devezer et  al. (2019) provide 
thoughtful analysis and argumentation for how formal-
ism can be used to improve scientific practices.

A more stringent threshold (α = .0005)  
for two-group between-subjects  
hypothesis testing

Using a = .0005 sets a more stringent threshold than 
recent high-profile recommendations for methods reform 
(Benjamin et al., 2018). It’s hardly our goal to further 
contribute to file-drawer problems by arguing that some 
studies should not be published if ψ is less than 3 . 
Indeed, we believe that all studies should be reported 
and that p values (likewise, ψ values) should not serve 
as gatekeepers to the literature. Yet for researchers who 
want to provide a characterization that goes beyond 
mere detection (e.g., “the two groups differ”) and ensure 
that their estimates are distinguishable from random con-
clusions, a more prohibitive a level is arguably required. 
Rather than a tool for censorship, ψ can be perceived 
as a useful way to adjust the strength of one’s claims to 
the expected accuracy of the estimation process.

The importance of experimental design

The fact that small effects are commonly observed does 
not mean that they are inevitable—one should always 
keep in mind the artificial and constructive nature of 
effects (e.g., Guala & Mittone, 2005; Woodward, 1989). 
In the behavioral sciences, effects are often small 
because of the use of minimal experimental manipula-
tions that make the conditions being compared virtually 
identical, apart from a minor change (for a discussion, 
see Prentice & Miller, 1992). Researchers can rely on ψ 
to gauge the ability of a given experimental design to 
elicit a target phenomenon with sufficient accuracy, 
which in some cases can lead to the development of 
alternative experimental approaches. We do emphasize 
that notions of effect size are just one of many factors 
that impact experimental outcomes; see Buzbas et al. 
(2023) for a formal treatment of experimental design 
and its relation to replication rates.

Discussion

In reaction, one might argue that estimation accuracy 
should not be much of a concern if we care only about 
correctly detecting effects. We find this argument unten-
able for four reasons: First, knowledge about effect sizes 
plays a crucial role when using basic research findings 
to develop effective real-world interventions (Schober 
et al., 2018). Second, developing a theoretic account of 
the phenomena being studied typically requires more 
than just nominal or ordinal information (Meehl, 1978). 
Third, this reaction is at odds with the widespread use 
of statistical models that are predicated on quantitative 
comparisons of effects (Kellen et al., 2021), or the popu-
larity of inferential frameworks that call for a quantita-
tive reasoning of effects (Vanpaemel, 2010). Fourth, 
even in the context of coarse-grained theoretical 
accounts and ordinal predictions, knowledge about 
effect sizes is still relevant in the sense that it can inform 
us on matters of theoretical scope (i.e., how many peo-
ple conform to a given theory’s predictions; Davis- 
Stober & Regenwetter, 2019; Heck, 2021). That being 
said, we are not claiming that a focus on detection is 
by itself problematic, or that there are no legitimate 
contexts in which it takes center stage; we are asserting 
only that a mature scientific characterization calls for 
more than that, namely accurate estimates.

Alternatively, one could try to downplay the impor-
tance of estimation accuracy by arguing that talk of 
effects is by itself problematic, in the sense that effects 
are of secondary importance relative to the explanation 
of psychological capacities (van Rooij & Baggio, 2021). 
We take issue with pursuing such a line of reasoning 
here, as it mistakenly implies that giving psychologi-
cal theorizing the attention that it is owed somehow 
eliminates effects from researchers’ discourses. As a 
counterexample, consider the recent discussion on 
benchmark effects in short-term and working memory, 
a research domain that stands out for its highly sophis-
ticated theoretical accounts (Oberauer et al., 2018). By 
contrast, the empirical exigencies of theory testing and 
development give estimation accuracy center stage 
(Meehl, 1978).

One could also argue that there is nothing new to 
see here, given that ψ is so closely related to already-
established quantities. For instance, it is easy to see that 
ψ is a quadratic function of the t statistic (for details, 
see the Appendix). Rather than an all-new, all-different 
quantity to be reconciled with all the other ones in 
researchers’ toolboxes, what ψ offers is a reframing of 
an old problem. It is an attractive feature, not a short-
coming,6 that ψ is closely related to known quantities 
or tests, or that the pursuit of estimation accuracy ends 
up recovering similar methodological proposals with 
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distinct motivations (e.g., Benjamin et al., 2018). It is 
also worth noting once again that although we assumed 
Gaussian distributions when deriving our ψ value rec-
ommendations, the definition of the RCE and the sub-
sequent interpretation of ψ as a ratio of MSE values is 
distribution-free.

Regardless of one’s scientific view, random conclu-
sions are indefensible. It follows that researchers’ 
empirical findings should, at a minimum, be distin-
guishable from a foil whose conclusions are determined 
by a coin flip. But as we have demonstrated, this is 
easier said than done: Many published research studies, 
despite honest efforts, have barely improved upon the 
estimation accuracy of the infamous Lab 2. As it turns 
out, one can easily fail to reliably outperform Lab 2, 
even if effects are real, studies are based in strong 
theory, and no questionable research practices are at 
play. The RCE approach and the ψ index that can be 
derived from it provide a new perspective on method-
ological reform (Devezer et  al., 2019; Munafò et  al., 
2017; Shrout & Rodgers, 2018). Everything begins with 
a simple statement: The estimation accuracy of our 
methods should be distinguishable from a random-
conclusions foil. In the pursuit of this modest goal, we 
find that the default p value threshold of .05 does not 
rule out unacceptable conditions (see the bottom row 
of Fig. 1), leading us to more stringent criteria that also 
address known concerns with measurement error, sta-
tistical power, and replicability (Gelman & Carlin, 2014; 
Loken & Gelman, 2017; Maxwell et al., 2015; but see 
also Bak-Coleman et al., 2022). Based on these results, 
we believe that ψ and the RCE approach more gener-
ally constitute an important tool in improving psycho-
logical science.

Appendix

Formal characterization of ψ
All code is available on the Open Science Framework 
(OSF) at https://osf.io/2hza8/?view_only=f679d2211a3
14f469118e2fa27111fea.

Let X X X Xn1 2 3A A A A, , ,...,  be n -many independent, 
identically distributed samples from a random variable, 
XA, with mean mA and variance σ2, where σ2 is finite. 
Likewise, let X X X Xn1 2 3B B B B, , ,...,  be n-many indepen-
dent, identically distributed samples from a random vari-
able, XB, with mean mB and variance σ2. We assume that 
XA and XB are independent of one another. We quantify 
accuracy via mean-squared error (MSE):

MSE A A B B= − + −[( ) ( ) ],µ µ µ µ 

2 2

where “[ ]⋅ ” is the expectation operator and m̂A and m̂B 
are, respectively, estimates for mA and mB.

Result 1.  The ratio of MSE values between the random 
conclusion estimator (numerator) and sample means 
(denominator) is equal to
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Equation 1 is obtained by taking the ratio of MSERCE  
to the MSE of sample means,
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The value ψ is easily expressed in other metrics. It 
is equivalent to t 2 1+ , under the usual t metric, provid-
ing a direct relationship with the two-sample t test. 
Relevant to questions involving replication, we can also 
write out-of-sample R2 (Campbell & Thompson, 2008), 
denoted ROS

2 , as a simple function of ψ . Consistent with 
typical formulations, we compare sample means against 

a competitor that uses the grand mean, G x x= +
1

2

1

2
A B , 

as the estimate for the population means in each group. 

https://osf.io/2hza8/?view_only=f679d2211a314f469118e2fa27111fea
https://osf.io/2hza8/?view_only=f679d2211a314f469118e2fa27111fea


Perspectives on Psychological Science 19(1)	 233

As before, we assume equal n in both groups. Direct 
calculation provides the following relationship:

R
n
n

n
nOS

G

2

2

2 2 21 1

2

2

2

1
4

2
= − = −

+
= −

+
MSE

MSE
means

σ

σ δ δ( )

= −1
2
ψ ,

where MSEmeans  and MSE
G
 are the MSE values for sam-

ple means and the grand mean, respectively.

Comparing sample means to the RCE 
via Kolmogorov-Smirnov tests

We carried out a power analysis to determine the sam-
ple size n  for achieving a power of .80 to reject the 
hypothesis that bivariate samples from the two distribu-
tions (sample means and RCE) are equal. We used the 
two-dimensional Kolmogorov-Smirnov test of Fasano 
and Franceschini (1987) with an a of .05. These power 
analyses were carried out in MATLAB using Lau’s (2021) 
implementation of the test. The first row of Table A1 
shows the required number of samples to achieve a 
statistical power of .80 as a function of ψ . We also car-
ried out a power analysis using a one-dimensional test 
that examines the distribution of differences between 
mean estimates—that is, we calculated similar power 
analyses using d x x= −A B . For this test, we used the 
two-sample Cramér-von Mises goodness-of-fit test  
(T. W. Anderson, 1962), as implemented in MATLAB by 
Cardelino (2021). The second row of Table A1 displays 
the required number of samples to achieve a power of 
.80 for each estimator as a function of ψ .

Rows 1 and 2 of Table A1 list the minimum number 
of studies (draws) per lab to reject the null hypothesis 
that estimates from the two labs follow the same gen-
erating distribution with a statistical power of .80. Row 
3 presents the gain in information about the direction 
of an effect when estimated by sample means (relative 

Table A1.  Power analyses.

ψ = 1 5. ψ = 2 ψ = 3 ψ = 5

2D Kolmogorov- 
Smirnov test

54 31 19 15

Cramér-von Mises 
test

45 27 20 18

Information gain .29 .49 .72 .91

to the RCE), where 0 represents no reduction in uncer-
tainty and 1 represents total reduction in uncertainty.

Comparing samples means to the RCE 
via entropy

We can evaluate the two estimators with respect to 
information gain regarding the direction of the effect. 
The RCE randomly assigned condition labels according 
to a fair coin toss ( . )p pA B= = 50 . The Shannon entropy 
of the RCE with respect to direction of the effect is 
given by

H p p p p( ) { ( ) ( )}

. ( . ) . (

RCE log log

log log
A A B B= − +

= − −
2 2

2 20 50 0 50 0 50 0.. ) ,50 1=

or total entropy about the direction. In other words, as 
n  approaches ∞, RCE estimates converge to { , }− +d d . 
Note that entropy is not contingent on d  or n and thus 
the RCE yields total entropy about the direction, regard-
less of sample size or effect size. The RCE thereby 
exemplifies the principle of maximum entropy ( Jaynes, 
1957), which holds that the probability distribution with 
the largest entropy best represents the most uniform 
state of knowledge. To that end, ψ contextualizes the 
sample-means estimator relative to an optimally defi-
cient estimator, such that higher values of ψ indicate 
greater accuracy beyond mere random conclusions 
regarding direction.

The relationship between the two estimators can be 
further quantified in information-theoretic terms: As ψ 
increases from 1.0, the sample-means estimator will 
afford an increase in information relative to the RCE. 
This is illustrated in Figure A1, which depicts informa-
tion gain (or reduction in entropy) as a function of ψ . 
The y-axis represents the bits of information that are 
gained when using sample means rather than the RCE, 
with values ranging from 0 (no information gain; i.e., 
sample means are as equally uninformative as the RCE) 
to 1 (complete information gain; i.e., sample means 
eliminate 100% of the uncertainty that comes with using 
the RCE). For example, the dotted line in the figure 
shows that the threshold ψ = 3  is associated with a 72% 
increase in information. If researchers desire a 90% gain 
in information beyond the RCE, they must achieve a 
ψ greater than4 76. ; a 95% gain in information requires 
a ψ greater than 5 99. . To create this figure, we used the 
entropy package in R (Hausser & Strimmer, 2009) to 
calculate the Shannon entropy H , in bits, of the sample 
means and RCE distributions generated by all combina-
tions of δ∈ { ,. ,. ,..,. }0 01 02 90  and n∈ { , , ,..., }20 22 24 200 .  
We then found the reduction in entropy H HRCE SM−  
(i.e., the information gain) at corresponding values of 
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ψ . All code is available in the OSF repository linked  
above. Our use of information gain is equivalent to the 
(asymmetric) Kullback-Leibler divergence (Kullback & 

Leibler, 1951) D SM RCE SM x
SM x

RCE xx

KL log( ) ( )
( )

( )
 = 








∈
∑


, 

which we deemed theoretically appropriate because it 
allows us to gauge improvements in the accuracy of 
sample means estimation relative to that of the maxi-
mally entropic RCE. Analysis of the (symmetric) Jensen-
Shannon divergence reveals a nearly identical trajectory 
across values of ψψ, but without the theoretical align-
ment or ease of interpretation.

Quantifying the difference between 
distributions via the Wasserstein metric

To quantify the differences between the left and right 
sides of Figure 1 we relied on the Wasserstein metric, 
which is also known as the Earth Mover’s Distance 
(EMD) because it determines the most efficient strategy 
for transporting a certain mass of earth from one posi-
tion to another (Urbanek & Rubner, 2015). Specifically, 
the transportation of some mass from position 
P p w p wp m pm
= {( , ),..., ( , )}1 1

, where pi  is a unit of the 
reference mass with weight wpi

, to position 
Q q w q wq n qn
= {( , ),..., ( , )}1 1

, where q j  is a unit of the tar-
get mass with weight wqj

, is given by the EMD: 

EMD( , )
( )

P Q
d f

f

i

m

j

n

ij ij

j

n

ij

= = =

=

∑ ∑
∑
1 1

1

, where dij is the ground 

distance between pi  and q j  and fij  is the optimal path 
from pi  to q j .

In the current context, the EMD reflects the minimum 
amount of work (where one unit of work corresponds 
to transporting one unit of mass by one unit of distance) 
that is required to convert each random conclusions 
distribution to its corresponding sample-means distribu-
tion. We used the R package emdist (Urbanek & Rubner, 
2015) to derive the EMD under each scenario in Figure 
1 (see the OSF repository for code). When the effect 
size is small, the sample-means estimate in the bottom 
left panel (Fig. 1) shows that a negligible amount of 
work has been done to improve upon the random-
conclusions estimate in the bottom right panel (Fig. 1), 
EMD = .106 ; on average, each unit of mass in the RCE 
panel would need to be moved just .106 units to match 
the mass in the sample-means panel. Relative to this 
small-effect-size condition, it would take six times more 
work to improve upon the RCE when δ is large 
(EMD = .635) and four times more work when δ is mod-
erate (EMD = .424). In other words, more work is neces-
sary whenever researchers want to ensure that their 
estimates are notably better than the mathematically 
least-informative estimate.

Confidence intervals around the true ψ
For each effect size δ considered, we computed 95% 
confidence intervals (CIs). The approach used to com-
pute these intervals (see Cumming & Finch, 2001) con-
sisted of determining the noncentral t  distributions 
whose tails yield the observed t  statistic (which can be 
obtained from δ and n) with nominal probabilities (e.g., 
0.025 and 0.975). Because the present analysis focuses 
on absolute effect sizes, we established a lower bound-
ary (δ = 0) on these intervals (for which ψ = 1).

We investigated the coverage rates of the 95% inter-
vals obtained for true effect sizes, such as the ones 
illustrated in Figure 2. Specifically, we performed the 
following steps:

1.	 Computed the 95% CI for known values of δ  
and n.

2.	 Generated 2×n samples from two normal distri-
butions with variances 1 and means 0 and d .

3.	 Computed an effect-size estimate d  from the 
2×n samples taken in Step 2 and subsequently 
transformed this estimate into a ψ  estimate.

4.	 Checked whether ψ  was included in the CI com-
puted in Step 1.

5.	 Repeated Steps 2 through 4 100,000 times.
6.	 Performed Steps 1 through 5 for different com-

binations of δ and n values.

The results reported in Table A2 show that the 95% 
CIs around the true effect sizes, when transformed into 
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Fig. A1.  Information gain afforded by sample means (relative to the 
RCE) regarding the direction of an effect as a function of ψ.
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ψ intervals, included the ψ  estimates obtained from 
random samples roughly 95% of the time. These results 
corroborate our interpretation of these CIs around true 
values of ψ as ranges of plausible ψ estimates under a 
given effect size δ and sample size per group n.

Using effect-size priors to determine n

Further, ψ can be used to determine the sample size 
n that is expected to satisfy one’s accuracy standards. 
Although our previous examples focused on point-
effect-size values (see Fig. 2a), it is easy to incorporate 
prior beliefs in terms of an absolute effect-size distribu-
tion π δ( ) with support over the positive reals. Let ψmin  
be the minimum accuracy threshold. For a given effect 
size δ, the minimum n ensuring a threshold-satisfying 
ψ  value is given by

nmin min
min( , )δ ψ

ψ
δ

=
−2 2

2

The expected nmin  can be obtained by calculating 
the following integral:

[ ] ( , ) ( )n n dmin min min= ∫ δ ψ π δ δ

For example, if we assume a uniform prior over 
[ . , . ]0 1 0 5  and a threshold of 3, then [ ]nmin = 80 . Note 
that, alternatively, one could consider the minimum n  
for a given δ that yields a lower bound of plausible ψ 
estimates that satisfies the threshold. If we consider the 
95% CI as our range of plausible values, then an inte-
gration over δ like the one above yields [ ]nmin ∼∼ 457.

Finally, note that alternative prior distributions could 
be used instead (Gronau et al., 2019). For example, we 
could assume a truncated t-prior on δ with a location 

Table A2.  Coverage Rates of the 95% Confidence Intervals Around ψ  for 
a Given True Effect Size δ and Sample Size per Group n.

δ = 0 1. δ = 0 2. δ = 0 3. δ = 0 4. δ = 0 5.

n = 5 0.93 0.94 0.94 0.94 0.94

n = 10 0.95 0.96 0.96 0.96 0.96
n = 20 0.96 0.97 0.97 0.97 0.97

n = 50 0.97 0.97 0.97 0.97 0.95

n = 100 0.97 0.97 0.96 0.95 0.95

n = 200 0.97 0.97 0.95 0.95 0.95

n = 500 0.97 0.95 0.95 0.95 0.95
n = 1 000, 0.96 0.95 0.95 0.95 0.95
n = 2 000, 0.95 0.95 0.95 0.95 0.95
n = 5 000, 0.95 0.95 0.95 0.95 0.95
n = 10 000, 0.95 0.95 0.95 0.95 0.95

of 0.30, a scale of 0.05, degrees of freedom (df) of 3, 
and support over [ . , ]0 05 +∞ . This prior, which is illus-
trated in Figure A2, places most of its mass on effect 
sizes ranging between 0.2 and 0.4. Computing the 
above integrals using this informative prior instead 
results in [ ]nmin  of approximately 56 and 323, 
respectively.

Histograms comparing the two 
distributions at different values of ψ
As an illustration, Figures A3–A7 display bivariate his-
tograms for simulated data under sample means (left-
hand columns) and random conclusions (right-hand 
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Fig. A7.  Bivariate histograms comparing the sampling distribution of sample means to the random conclusions estimator 
under a ψ of 10. Each row of figures corresponds to a different combination of d and n to yield the same value of ψ.

columns) for ψ values of 1 5 2 3 5. , , , , and 10. Each row 
corresponds to δ values of 0 10. , 0.20, 0.30 and 0.40 for 
values of n  that give the appropriate value of ψ. By 
examining Figures A3 through A7, we can see that the 

estimator’s variance clearly depends upon n, but the 
relationship between sample means and the RCE 
remains stable for fixed values of ψ at different com-
binations of n and δ.
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Notes

1. This type of argument is foundational to myriad other exist-
ing procedures, such as determining whether fitted network 
models are distinguishable from networks with randomly deter-
mined connections (Steinley & Brusco, 2021). Looking further 
back, another example would be techniques such as Horn’s 
parallel analysis (Horn, 1965).
2. We use δ to denote the true effect size in the population and 
d  to denote sample estimates of δ. When we refer to the popu-
lation value of Cohen’s d , we are referring to δ.
3. To be clear, we are also not suggesting that comparisons 
with Lab 2 can serve as a way to identify errors or questionable 
research practices.
4. See Davis-Stober and Dana (2014) for a proto-RCE estimator 
along these lines.
5. Indeed, rejecting the null at the α = .05 level is equivalent to 
stating that the 95% CI over ψ does not include 1, a value that 
can be achieved only if there is precisely no effect.
6. For a similar scenario in which the same model-selection 
index is derived from very different theoretical foundations, 
see Grünwald and Navarro (2009) and Karabatsos and Walker 
(2006).
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